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Abstract 
 
Methods and initial results are described for model-based controls with offline optimization for integrated 
shading and UFAD control for an office building in New York. Two cases are studied through lookup-table 
calculation and annual simulation of the resulting controllers: one case with interior blinds, the other case 
with exterior blinds. The interior blind case was found to reduce HVAC energy by 5% over a simple 
baseline control, and the exterior blind case produced a 5.6% HVAC energy savings over the baseline. 
Further investigations and case studies are planned. 
 
Keywords: Model predictive control (MPC), offline optimization, cloud computing, integrated controls, 
shading and HVAC controls. 
 
 
 
1. Background 
 
A new and highly efficient office building in Manhattan was used for this study. The building has 
automated shading, automated dimmable lighting and an underfloor air distribution (UFAD) system. The 
automated shades and HVAC system are currently being controlled independently. The question at hand is 
whether there might be any energy savings available through integrated control of the two systems. The 
study also hopes to address this question more broadly than for just this particular building by considering 
different climates and variants on the system configurations. 
 
 
2. Problem definition 
 
Figure 1 shows the two control setpoints considered in this study: solar shading position and supply air 
temperature setpoint. The goal is to determine the optimum values for these setpoints (as a vector, noting 
their interdependence) that minimize combined HVAC and lighting energy consumption, for any given 
weather and loads conditions.  
 

 
Fig. 1. Blinds and HVAC control variables of interest  
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The optimization must consider various complexities, including: 
• the general tradeoffs between thermal loads and lighting energy for different blind positions 
• the effects of solar gains to the floor on thermal decay in the UFAD system, which effects supply 

air flow rates and feasible supply air temperature ranges, and thus cooling COP and the potential 
for economizer operation 

• capturing the solar gains at the blind creates a plume that drives thermal stratification in the zone, 
which affects cooling COP. 

 
Of the various possible configurations to be considered in this study, the most grounded (and the most 
likely to be implemented) is to use the existing roller-shade control algorithm as an upper bound for the 
shade position. The existing shade control is primarily for the avoidance of glare discomfort and 
maintenance of views, and may be summarized as follows: (1) keep the shades open as much as possible 
while still satisfying (2) and (3); (2) do not allow direct solar exposure beyond 3 ft from the facade; (3) and 
lower shades insofar as necessary to avoid glare. 
 
In this report on initial studies, two different shading configurations are considered: interior venetian blinds 
and exterior venetian blinds, in both cases controlled continuously for angles between 90o (horizontal, 
open) and 10o (closed). These configurations are the simplest to model in EnergyPlus, and provide insights 
into the nature of the problem and what to expect (and where to focus further modeling efforts and 
optimization precisions) with the other configurations. 
 
Because of the inherent complexities of the problem, it is difficult to determine control rules that would 
minimize the energy use under all possible conditions. So a model-based approach is being used. 
 
 
3. Methods 
 
3.1 Background on model-based controls for buildings 
 
3.1.1 Online model-based control 
 
Online MPC (Model Predictive Control) offers a way of approaching such problems. Instead of trying to 
define the control logic explicitly, a building model and an optimization algorithm are used within the 
control system in real-time to calculate the best setpoint values given the current and predicted conditions. 
In its general configuration, at each controller time step an optimal sequence of control values over a 
prediction horizon is calculated, only the first of which is implemented, and at the next controller time step 
the horizon shifts forward one step and the process is repeated. (Note that a number of variants on this are 
also possible, such as implementing two or more time steps of inputs and performing the optimization less 
often, or having different control and prediction horizon lengths.) In cases where prediction is not 
necessary, the setup is the same but without a prediction horizon. 
 
MPC is widely used in other fields – Qin and Badgwell (2003) note its use in more than 4,000 industrial 
applications. It was a proven practical technique before it was studied theoretically. Good overviews of the 
field are available in Morari and Lee (1999) and Mayne et al. (2000).  
 
There have also been a growing number of MPC studies for building systems over the past decade, 
stemming not from controls research but from building energy simulation research. (See for example 
Mahdavi (2001), Clarke et al. (2002), Henze et al. (2005), and see the review in Coffey et al. (2010). Some 
more recent work has come from controls researchers from other fields turning their attention to buildings 
(e.g. Ma et al. (2010) and Oldewurtel et al. (2010)). Potential for energy savings, demand reduction and 
performance improvement has been shown with a wide variety of systems, including chilled water storage, 
radiant slab pre-cooling and integrated HVAC and facade control. And as buildings become more complex 
the benefits of MPC are expected to become more pronounced. 
 
But MPC is currently far from common practice in building design and operation. It is difficult to use most 
building simulation tools for this because of their slow run-times and the fact that many do not allow the 



user to explicitly specify initial state values, and the software used by most controls researchers is 
unfamiliar to most buildings researchers and practitioners. In addition, online optimization is difficult to 
implement within existing building control systems, and the fact that the control logic is implicit rather than 
explicit makes it difficult for system designers to integrate it into their design processes. 
 
3.1.2 Model-based control with offline optimization 
 
For some types of MPC problems, multiparametric programming can be used to solve the problem 
explicitly, providing a set of control laws that fully cover the conditions space and that exactly replicate 
control behaviour of online MPC (Bemporad et al., 2002). However, this can only be used with certain 
types of MPC problems (e.g. linear or switched-linear models with linear or switched-linear objective 
functions), into which forms this case study would be very difficult or impossible to squeeze. And with the 
possible exception of Modelica (Wetter, 2009b), this approach would not be possible with any of the 
commonly used building simulation tools. But the idea of explicit MPC is very appealing for buildings 
applications, because it would be easier to implement in existing building control systems than online 
MPC, it would allow for faster annual simulations of the controller in the design phase, and being able to 
visualize optimal control responses over the full conditions space could provide useful feedback to both the 
controller design process and to the building and system design process in general.  
 
 Methods exist and are being further developed to approximate MPC with offline optimization and using 
common building simulation tools. Current work by May-Ostendorp and Henze considers the approach of 
simulating online MPC over some or all of a representative weather year and then using statistical 
techniques to derive near-optimal control laws from the results. This could provide a useful way of getting 
these benefits. The approach used herein is similar but slightly different: define a grid of conditions (initial 
states and predicted disturbances) that covers the range of what the system will face, solve the MPC 
optimization problem at each point in the grid, and then use the resulting grid of optimal control responses 
as an interpolation lookup table in real-time control. This approach is described in general in the following 
subsection, and in greater detail and with a variety of other case studies in (Coffey, 2011). 
 
 
3.2 Software and methods for offline optimization over a grid of conditions 
 
Open-source software for MPC with standard building simulation tools was developed in previous research 
(Coffey et al., 2010), using GenOpt (Wetter, 2009a) as the optimizer, which allows for the use of any text-
file based building simulation tool that can be called from the command line. Figure 2 shows the same 
basic structure being used to calculate control lookup tables.  
 

 
Fig. 2. Offline optimization over conditions grid 
 
 
 
 

SimCon

GenOpt

sim tool

Organization

Optimization

Simulation

setpoints

Real Building
or Annual Simulation

conditions

grid of
conditions

setpoints
for each

grid point

interpolation
lookup

table

Offline
(before annual simulation 

or implementation)

Online



Given a model of the building and/or system of interest, the steps involved in using this process are: 
• Create template input files by demarcating the control variables (with \%) and conditions variables 

(with \$) in the model and weather files, and locate the objective function in the output file. 
• Define bounds and precisions for the control variables, and define conditions variables to be used 

in the grid (this may be a smaller set than the conditions variables used in the model, as discussed 
below) along with bounds and spacings for the grid. Configure GenOpt and SimCon with these. 

• Use SimCon and GenOpt to solve for the optimal control values at each point in the conditions 
grid. This is usually a computationally expensive process, but is easily parallelized, and with the 
use of many virtual machines on now easily-accessible cloud computing platforms, the question is 
more about money than about time. 

• The resulting grid of optimal control values can then be used as an interpolation lookup table for 
control in simulated or physical implementations, and the multidimensional grid can be visualized 
through scatter plots or by graphing 2- or 3-dimensional slices through it, providing important 
feedback to the design process. 

• This process can be used iteratively. It is wise to start by solving with a very coarse grid, and 
possibly with fewer conditions or control variables, fixing model bugs or adjusting objectives and 
bounds based on the feedback from the grid visualizations, and then building up the precision of 
the lookup table over 3 or 4 (or possibly more) iterations, keeping grid point solutions from the 
previous iteration if no changes were made. 

 
 
3.2.1 Range of applicability 
 
The basis for Figure 3 below is simply that the computation time required for lookup table creation is the 
product of the conditions grid size and the average computation time per grid point. The dollar costs are 
based on $0.10 per processor-hour, which is roughly the current commercial cloud computing cost for 
small-scale users. The shaded area is a conservative cut-off for financial feasibility for a consulting or 
design firm working on a single building, assuming some iteration in the process. The figure highlights the 
trade-offs between model complexity, optimization precision and grid spacing, and shows the scale of 
problems that are feasible - simulation time must be within seconds (note that this is over a simulation 
horizon of hours or days, rather than a full year), and the number of conditions variables must be kept to 
less than roughly 5 or 6.  As such, this approach usually requires approximations to limit the dimensionality 
of the lookup table.   
 

 
 
Fig. 3. Computational requirements 
 
 
3.2.2 Approximation techniques 
 
Consider a control problem that requires day-ahead predictions of ambient temperatures, such as the 
overnight cooling of a massive chilled floor or ceiling. If hourly predictions were used, this would require 
24 dimensions in the conditions grid just for the ambient temperature, making the offline solution 
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computationally infeasible. One way of decreasing the dimensionality is to use a coarser prediction, for 
example using average temperatures for 4-hour blocks instead of 1-hour blocks. Another approach is to 
take advantage of the expected shape of the curve, and use a small number of parameters to define the 
prediction, such as the maximum and minimum temperatures and maybe the time of their occurance. In any 
such variation, a normalized curve is required to produce the values of the temperature at each timestep of 
the simulation, based on the predicted values of the parameters. Normalized curves can be derived using 
typical or historical data for the site or system under consideration, as demonstrated below. Similar 
approaches can be used for other disturbance variables, or to relate disturbance variables to one another. 
 
Even with the approximations of input parametrization, many control problems in buildings still have too 
many dimensions to be tractable as lookup tables. However, the approach may still be useful in such a case, 
if the structure of the problem allows it to be decomposed into a hierarchical set of problems where some of 
the subproblems are small enough to be solved offline. This is discussed in detail and used in case studies 
in (Coffey, 2011).  
 
3.2.3 Open-source software 
 
The SimCon software described in (Coffey et al., 2010) has been extended to be used for this offline 
approach. It is written in java, and the source code will be freely available for download (site tdb). The 
software's current functionality includes: the option of running in either online MPC mode or in lookup 
table calculation mode, so the same software can still be used for online MPC, including cases with 
decomposed problems that involve a higher-level problem that must be solved online and lower-level 
problems that can be solved offline as lookup tables; core methods to set up a sequence of optimization 
problems for a user-defined conditions grid, solve them using GenOpt, and record the results to a lookup 
table file; multi-variable interpolation for lookup tables stored in a text file; and an extensible library of 
algorithms to convert conditions inputs to and from parametrized forms. Peripheral components are also 
included in the open source code, including sample files for running annual simulations with the controller 
in the Building Control Virtual Test Bed (BCVTB, (Wetter and Haves, 2008)), java methods for collecting 
weather predictions from the National Digital Forecast Database, sample java-based interfaces for human-
in-the-loop implementations, and a visualization tool for the lookup tables and a weather conditions 
parametrization tool, both currently in Excel-VBA.  
 
 
 
3.3 Overview of steps and report structure 
 
The structure of this report mirrors the required steps in the offline-optimization procedure:  

• Develop model (Section 4) 
• Develop control optimization structure, including conditions parametrization and grid definition 

(Section 5) 
• Compute control lookup table, graph and analyze the results (Section 6) 
• Test controller through annual simulations in BCVTB (Section 7) 
• Debug, refine model and optimization structure, repeat 

 
 
4. Model description 
 
An EnergyPlus version 6.0 model of a single floor was constructed, using some of the constructions and 
schedules information in an existing EnergyPlus version 1.2 model from the design phase, but with new 
zoning and new UFAD modeling capabilities. Figure 4 shows the model of the full floor. Figure 5 shows a 
one-perimeter-zone extraction from the full floor model, which is used in the study herein. Table 1 shows 
some of the key model parameters and their values in the current model - these values and their associated 
schedules should be calibrated using actual building data that is currently being collected. 
 
The EnergyPlus model uses the EPMacro language extensively, structured as a set of include files (e.g. 
different files for geometry, internal loads, HVAC distribution, etc) and one main imf file that references 



these files and also lists key global parameters, such as the control setpoints. This facilitates model 
debugging and makes parametric analysis, calibration and optimization easier to configure. 
 
 

 
Fig. 4. EnergyPlus model of an office tower floor 
 
 

 
Fig. 5. Extracted model with just one perimeter zone 
 
Table 1: Some key model parameter values 

lighting power density 4.0 W/m2 
equipment power density 10.0 W/m2 

occupant density 15 m2 / person 
chiller COP at rated conditions 3.0 

pumps motor efficiency at rated conditions 0.87 
pumps total efficiency at rated conditions 0.62 

 
The control setpoints are the blind angle (between 0o-900) and the supply air temperature (between 12-
17C). In the baseline for comparison, the control values are kept constant at a 90o blind angle and a 12C 
supply air temperature. 
 
Two different cases were tested: interior blinds and exterior blinds. Figure 6 and Table 2 show the annual 
energy consumption by end use for the interior blinds case with the baseline control. The end use 
breakdowns in the exterior blind base case are similar. Note from Figure 6b and 6c that the variations in 
cooling and fan energy are driven primarily by variations in the ambient temperature, with the solar gains 
variations playing a secondary role. Also note the decrease in lighting energy use as the direct solar 
increases from to 200 W/m2, and that the decrease saturates beyond that point. 
 



a. 

 
b.      c. 

  
 
Fig. 6. Annual energy basecase, end-use breakdowns  
 
Table 2: Base case annual energy consumption by end use, kWh/m2 

 total lights plugs fans pumps cooling heat reject. 
base case 170.92 31.79 87.60 17.65 0.03 27.74 6.11 
% of total  19% 51% 10% 0% 16% 4% 

 
 
5. Control optimization configuration 
 
5.1 Assumptions and overview 
 
Because the building envelope is primarily glass and the zone temperatures are kept relatively constant, it is 
being assumed that thermal mass has little effect on the optimal values of the blind position and supply air 
temperature. Neglecting thermal mass simplifies the control optimization analysis significantly because it 
can be done without considering a prediction horizon. The effects of this assumption can be tested later by 
closer inspection of annual simulations of the resulting controller used in the building with its thermal mass 
being modeled accurately.  
 
As noted above, the offline optimization approach is generally only feasible with less than roughly 5-6 
conditions variables. For this analysis, 5 conditions variables have been chosen a priori for the grid. This 
selection may be done more rigorously by analyzing the sensitivity of the optimal control values to 
different conditions variable choices, but that is a laborious process that can hopefully be avoided through 
good engineering judgment. The 5 conditions chosen in this case are as follows: ambient temperature, 
direct beam radiation, day of year, diffuse horizontal radiation, and time of day. 
 
The day of year and time of day variables are being used primarily to capture solar position, but may also 
be used to estimate internal loads in the model with calibrated schedules. Note that the EnergyPlus weather 



files have many more variables than just the 5 conditions listed above. The remaining variables are 
estimated as functions of these 5 conditions, as described in the conditions parametrization section below. 
 
The general process for setting up the control optimization and calculating the lookup table is as follows: 

1. set up the EnergyPlus model to run over just the desired horizon length and to output just the 
desired objective function, and demarcate control setpoints and configuration variables 
appropriately in the EnergyPlus model and the weather file so that they may be used in GenOpt 
and SimCon 

2. define the relationship between the selected conditions variables and the remainder of the 
conditions needed in the weather file, and code this relationship into the conditions 
parametrization part of SimCon 

3. determine bounds and spacing for the conditions grid, and solve for each point by running SimCon 
 
 
5.2 Model configuration for control optimization 
 
Although EnergyPlus is generally used for annual simulations, it may also be used for simulation lengths as 
short as one day. In this analysis, the simulation would ideally only be run for one timestep (usually 15 
minutes or less). But since this is not possible, it is run for one day and the objective function output is 
limited to just the hour of interest by using a schedule in the output definition. The month, date (derived 
externally by a pre-processing step in SimCon) and hour of day parameters are thus listed in the main imf 
file and used by the EPMacro language to define the start and stop days for the run period and the schedule 
used in the output.  
 
The main imf file of the EnergyPlus model also contains the two control variables, which are used by the 
EPMacro language to set these values in the appropriate places in the model. The GenOpt and SimCon 
variables are thus demarcated at the top of the main imf file as follows: 
 

##set1 SupplyAirTempVal = %supplyAirTemp% 
##set1 BlindsAngle = %blindAngle% 
##set1 MonthNum = $monthNum$ 
##set1 DayNum = $dayNum$ 
##set1 HourNum = $hourOfDay$ 

 
The EnergyPlus output reports are limited to just one variable:  
 

Output:Variable,*,Total Electric Demand,daily,ReportSched; 
 
The weather file, on the other hand, requires a heavier hand in its modification. In addition to the 
monthNum and dayNum values, there are 14 weather variable values that must be entered in the weather 
file, as shown below. The parametrization to go from the 5 conditions variables to these 14 weather inputs 
is described in the next section. 
 
 
 
 
 
LOCATION,New York Central Prk Obs Belv,NY,USA,TMY3,725033,40.78,-73.97,-5.0,40.0 
... 
DATA PERIODS,1,1,Data,Sunday,$monthNum$/$dayNum$,$monthNum$/$dayNum$ 
... 
1987,$monthNum$,$dayNum$,6,0,[long flag value],$Tamb$,$Tdp$,$RH$,101500,$EtHorRad$,$EtDirNorRad$, ...  
           $HorIRsky$,$GlobalHor$,$DirectNorm$,$DiffuseHor$,$GlobalHorIll$,$DirectNormIll$,$DiffuseHorIll$, ... 
           $ZenithLum$,190,$WindSpeed$,0,0,40.2,77777,9,999999999,110,0.243,0,88,999,999,99 
 
 



5.3 Conditions parametrization 
 
Many of the EnergyPlus weather variables are closely coupled, such as the diffuse horizontal radiation 
(W/m2) and the diffuse horizontal illuminance (lux), where one may be reasonably well approximated by a 
linear correlation with the other. With this in mind, an Excel spreadsheet is used to graph and linearly 
correlate any particular weather variable with each of the 5 chosen conditions variables, as shown in Figure 
7. In this particular screenshot, the zenith illuminance (Cd/m2) is being compared against (from left to right 
and top to bottom) the day of year, hour of day, ambient temperature, direct normal radiation and diffuse 
horizontal radiation. The diffuse horizontal radiation shows a good correlation (shown in closer detail in 
Figure 8 so the linear curve fit relating the two variables is used in the conditions pre-processor in SimCon 
to derive the value for zenith illuminance given the diffuse horizontal radiation. For cases where none of 
the conditions variables correlate well with the particular weather variable (e.g. wind direction, as shown in 
Figure 9), then the average value for that weather variable is used throughout. Figure 10 shows various 
graphs from this correlation process, and Table 3 summarizes the correlations that are being used. 
 
 

 
 
Fig. 7. Screenshot of hourly weather parametrization in Excel, zenith illuminance  
 
 
 



 
 
Fig. 8. Zenith illuminance vs diffuse horizontal radiation  
 
 

 
 
Fig. 9. Screenshot of hourly weather parametrization, wind direction  
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Fig. 10. Example weather variable correlations  
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Table 3: Parameter correlations 

variable  correlate equation R2 
Tdp  Tamb y = 1.0082x - 7.0768 0.8557 
RH  use Tdp psychrometric function  

Extraterr Horiz Rad (Wh/m2)  Diffuse y = 3.3948x + 53.85 0.8516 
Extraterr Direct Normal Rad (Wh/m2)  hr y=1400 if 7$<$hr$<$18, 0 otherwise  
Horiz Infrared Rad from Sky (Wh/m2)  Tamb y = 5.4938x + 260.2 0.878 

Global Horiz Rad (Wh/m2)  Direct y = 0.7989x + 47.26 0.7039 
Global Horiz Ill (lux)  Direct y = 83.749x + 5397.5 0.6804 

Direct Normal Ill (lux)  Direct y = 98.645x - 312.56 0.9931 
Diffuse Horiz Ill (lux)  Diffuse y = 113.14x + 216.25 0.9962 

Zenith Luminance (Cd/m2)  Diffuse y = 44.955x + 63.426 0.4138 
Wind Direction (degrees)  average 190  

wind speed (m/s)  Tamb y = -0.044x + 5.9043 0.0393 
Sky cover  average 4  

Opaque sky cover  average 4  
Visibility (km)  average 15  

Ceiling height (m)  average 77777  
 
This process can be improved for some variables in future iterations, by considering higher-order and 
multi-variable correlations. For example, the global horizontal radiation could be directly calculated from 
the diffuse horizontal and the direct beam by using the solar angle knowing the time of day and day of year. 
 
 
5.4 Optimization grid configuration 
 
The multi-dimensional grid used for the disturbances is as shown in Table 4. (Note that in the final lookup 
table used in the controller, the values calculated for day of year = 92 are copied for day of year = 274, and 
the day of year = 1 values are copied for day of year = 365.) This grid configuration results in 2475 sets of 
disturbances for which optimal control was to be determined. The Hookes-Jeeves algorithm in GenOpt was 
used, with 2 step size reductions. The optimization precision was set to 0.25C for the supply air 
temperature setpoint and 10o for the blind angle setpoint. Approximately 40 processor-hours of computing 
time were required to solve over the conditions grid (which was carried out twice, once for the interior 
blind case and once for the exterior blind case). 
 
Table 4: Conditions grid  

 min max spacing 
day of year 1 183 91 
hour of day 9 15 3 

ambient temperature (C) 5 30 2.5 
direct beam radiation (W/m2) 0 400 100 

diffuse horizontal radiation (W/m2) 0 400 100 
 
 
6. Control lookup tables 
 
6.1 Interior blind case 
 
Figures 11 through 13 show some of the many possible slices through the calculated lookup table. Figure 
11 shows the optimal supply air temperature as a function of ambient temperature and direct radiation, for 
various values of diffuse radiation and time of day (all of these graphs are for day of year = 183). The 
general shape of the optimal supply air temperature curve versus ambient temperature is consistent, with 
fairly minor deviations for different values of the other variables when the ambient temperature is near 
20C. The optimal blind position, graphed in Figure 12 for the same conditions as those in Figure 11, does 
not show the same consistency. It is particularly noisy when the solar gains are low. But the general trends 
are as expected, with the blinds tending towards closed when it is hot and sunny, and tending more towards 
open when it is cold or less sunny. Figure 13 shows the optimal blind position as a function of the direct 
and diffuse solar gains – here it shows somewhat less noise, and trends towards closed when either the 
direct or diffuse gains are high, and trends towards open when both are low. 
 



 
9am, diffuse rad = 0 W/m2 9am, diffuse rad = 200 W/m2 9am diffuse rad = 400 W/m2 

   
   
3pm, diffuse rad = 0 W/m2 3pm, diffuse rad = 200 W/m2 3pm diffuse rad = 400 W/m2 

   
 
Fig. 11. Interior blind case: Optimal supply temperature under various conditions  
 
 
 
9am, diffuse rad = 0 W/m2 9am, diffuse rad = 200 W/m2 9am diffuse rad = 400 W/m2 

   
   
3pm, diffuse rad = 0 W/m2 3pm, diffuse rad = 200 W/m2 3pm diffuse rad = 400 W/m2 

   
 
Fig. 12. Interior blind case: Optimal blind angle versus ambient temperature, under various conditions  
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Fig. 13. Interior blind case: Optimal blind angle versus direct and diffuse solar values 
 
 
 
 
6.2 Exterior blind case 
 
Figures 14 through 16 replicate the previous figures but for the exterior blind case. Note that the optimum 
supply air temperature curve is even more consistent in this case, deviating only very slightly from a 
constant curve shape versus ambient temperature. The optimal blind position is still noisy at low solar 
loads, but the trends towards closed under higher solar gains is stronger, and the results also show the 
optimal blind position to be more responsive to the ambient temperature than it is in the internal blind case. 
 
 
9am, diffuse rad = 0 W/m2 9am, diffuse rad = 200 W/m2 9am diffuse rad = 400 W/m2 

   
   
3pm, diffuse rad = 0 W/m2 3pm, diffuse rad = 200 W/m2 3pm diffuse rad = 400 W/m2 

   
 
Fig. 14. Exterior blind case: Optimal supply temperature under various conditions  
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9am, diffuse rad = 0 W/m2 9am, diffuse rad = 200 W/m2 9am diffuse rad = 400 W/m2 
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Fig. 15. Exterior blind: Optimal blind angle versus ambient temperature, under various conditions  
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Fig. 16. Exterior blind: Optimal blind angle versus direct and diffuse solar values 
 
 
 
 
7. Annual simulations 
 
7.1 Annual simulation configuration 
 
To test the lookup table control, its use is simulated through the Building Control Virtual Test Bed 
(BCVTB), as shown in Figure 17. The `lookupTableController' module calls a java function that reads the 
current conditions from a text file and interpolates over the lookup table to determine the control values for 
that timestep, and outputs those values to text files which are then read back into the BCVTB by the `u1' 
and `u2' modules. The `simulation' module runs an EnergyPlus model and makes it wait at each timestep 
for the new setpoints to arrive from the `u1' and `u2' modules. These new sepoints get used in the 
EnergyPlus model through the Schedule:ExternalInterface syntax in the main imf file. Otherwise, the 
EnergyPlus model is identical to the one used in the optimizations to derive the lookup table (although in 
future iterations the effects of model mismatch can be investigated by varying parameters in this annual 
simulation model). The timestep of the BCVTB simulation is 15 minutes. 
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Fig. 17. Simulated implementation with BCVTB  
 
 
The annual simulations were run with the NY Central Park TMY3 weather file. The annual ambient 
temperatures and solar radiation is shown in Figure 18. 
 
 

 

 
Fig. 18. Annual weather variables  
 
 
7.2 Interior blind case: Annual simulation results 
 
Figure 19 shows the control setpoints over the course of the year, and Figure 20 shows a more detailed 
view of just the month of March. The x-y plots of the control values versus the ambient temperature (Figure 
21) are somewhat more illustrative. The supply air temperature is behaving as expected, and the blind angle 
is generally trending towards closed when the ambient temperature is higher and open when it is colder, but 
there is more noise than expected. 
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Fig. 19. Annual control outputs 
 
 

 

 
Fig. 20. March control outputs  
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Fig. 21. Hourly control outputs vs ambient temperature  
 
 
Figure 22 shows the energy difference between the lookup table control case and the base case. In general, 
the lookup table case is using more fan power, but is saving more cooling energy. 
 
 

 
Fig. 22. Annual energy savings, end-use breakdowns  
 
 
The annual energy consumption is summarized in Table 5. The lookup controller is generally decreasing 
cooling energy compared to the base case by using more shading, and is trading off higher fan energy 
consumption for lower cooling energy by increasing the supply air temperature. There is a very slight (less 
than 0.005%) increase in lighting energy in the lookup case. It was suspected that this may be pointing to 
an error in the daylighting controls in the model, but this was thoroughly checked and is working properly. 
It seems that the lookup table controller is avoiding increasing lighting use in the way that it is controlling 
the blind, which would make sense if the cost of increasing lighting use always outweighs whatever cooling 
savings may be gained by increasing shading. 
 
Table 5: Interior blind case: Annual energy consumption, kWh/m2 

    total   HVAC   lights   plugs   fans   pumps   cooling   heat reject.  
basecase  170.92 51.53 31.79 87.60 17.65 0.03 27.74 6.11 
lookup  168.37 48.98 31.79 87.60 18.54 0.03 24.72 5.69 
savings  2.55 2.55 0.00 0.00 -0.88 0.00 3.01 0.42 
saving %  1.49% 4.95% 0.00% 0.00% -4.99% 0.56% 10.87% 6.83% 
 
 
As with the control values, it is often to view x-y plots of the energy consumption versus the ambient 
temperature (and against other variables). Figure 23 suggests that the control is not making much difference 
relative to the baseline when the temperature is less than 10C, and is generally saving energy in the 10-23C 
range, but seems to be often performing worse than the base case in the 23-30C range, which warrants 
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further investigation, although much of this poor performance is likely caused by the coarseness of the 
conditions grid and thus will be improved in future iterations (in particular, it is probably caused by the gap 
between the zero and the lowest solar gains point – this gap has caused similar performance losses in other 
case studies with this approach, and generally gone away with a finer spacing on solar gains in the 
conditions grid). Eliminating these areas of poor performance could provide somewhat higher energy 
savings with the controller. 
 

 
 

 
Fig. 23. Hourly energy consumption vs ambient temperature  
 
 
7.3 Exterior blind case: Annual simulation results 
 
The results for the exterior blind case are very similar to the interior blind case, but with slightly higher 
energy savings compared to the baseline. Table 6 shows the details; the annual HVAC energy savings were 
5.56%, rather than the 4.95% in the interior blind case. 
 
 
Table 6: Exterior blind case: Annual energy consumption, kWh/m2 

    total   HVAC   lights   plugs   fans   pumps   cooling   heat reject.  
basecase  168.95 49.56 31.79 87.60 17.25 0.03 26.20 6.08 
lookup  166.20 46.80 31.79 87.60 18.07 0.03 23.06 5.64 
savings  2.75 2.76 0.00 0.00 -0.82 0.00 3.14 0.44 
saving %  1.63% 5.56% 0.00% 0.00% -4.77% 0.58% 11.99% 7.19% 
 
 
 
8. Next Steps 
 
8.1 Debugging, further iterations 
 
The results presented here are a second iteration, after lessons learned from a first iteration. Some minor 
changes should still be made in the model and optimization configuration, and there is still unclear to the 
author why there is so much noise in the optimal shading position values. Further investigations and 
iterations are in order. This iterative process of testing and refining is an essential part of the offline 
optimization approach outlined herein.  
 
8.2 EnergyPlus-Radiance model 
 
The building has two aspects that warrant a more detailed treatment of solar gains than EnergyPlus 
normally allows. The first is the complex external shading device on the building. The second is the 
sensitivity of the UFAD system to whether solar gains land on the floor surface or on the furniture. If solar 



gains land on the floor, that increases the thermal decay in the plenum, producing a higher supply air 
temperature at the perimeter and a resulting increase in the fan box power consumption.  
 
To deal with these complexities, research modifications were made to the EnergyPlus source code to allow 
the use of scheduled heat gains on opaque surfaces and window layers, which allows the solar calculations 
to be carried out externally of EnergyPlus and fed into the thermal calculations. In this case the solar 
calculations are carried out with Radiance and Window6. After completion of the initial studies using just 
EnergyPlus, a combined EnergyPlus-Radiance model will be used to provide for more accurate results. 
 
8.3 Testing for different climates and design variants 
 
Once we are comfortable with the results of this study, it can be repeated for other climates and with other 
design parameter values (such as the reflectivity of the roller shades or the use of active external shading or 
changes to the building geometries or materials).  
 
 
9. Value and Prospects of Research Direction 
 
This initial study has shown 5.0% (interior-blinds case) and 5.6% (exterior-blinds case) annual-simulation 
HVAC energy savings for lookup table controllers for integrated control of shading and UFAD for this 
particular building and climate. These numbers could increase slightly with the use of a finer grid 
(particularly in the solar gains). It is expected that the savings for the original case outlined above, with 
roller shades and glare constraints (the case that would be most likely to be implemented) will produce 
somewhat less energy savings than those found in these initial case studies. Other configurations may 
produce slightly more.  
 
The value of the research lies in the following: 

• the approach is general enough that it can be used with many different types of systems, and 
provides a way of dealing with ever more complex integrated systems (such as the system 
considered here with the addition of natural ventilation or massive slab radiant cooling) 

• the approach is such that it can be streamlined and made available to building designers and 
consultants so that energy savings through better integrated control (or more for more complex 
systems) can be made commonplace 

• the potential savings are greater with more complex system integration, which seems to be the 
direction that the industry is heading 

• perhaps most importantly, the techniques mesh well with existing design processes (through the 
use of standard simulation tools and the ability to view and understand the controller's behavior) 
and with processes that should be more commonly used during building operation - fault detection 
& diagnosis and retrofit analysis with calibrated energy models 

 
The prospects for industry update are significant, if the methods and software are worked through 
rigorously and disseminated effectively. The success and growth of the company Optimum Energy, which 
developed out of Tom Hartman's work on near-optimum controls for chilled water systems, is a tribute to 
the demand. An open-source and more generalized approach, like the one used herein, could find broader 
use within the industry. 
 
The methods and software are not quite ready for broad use, but could currently be used by leading-edge 
consulting firms on particular projects (two such firms have already expressed interest in using it). The 
main methodological issues left to cover are the use of irregular grids for the conditions grids (which could 
be considered in the next iteration of this study), and devising better ways of working around the problem 
of implicit state initialization in many simulation tools (which is not a problem in this particular case study 
because of the negligible mass assumption). Otherwise the main challenges for market uptake are software 
usability and practitioner awareness and education, both of which can be improved through rigorous 
testing, documentation and dissemination of this case study and others like it.   
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